Online Learning with Composite Loss Functions
نویسندگان
چکیده
We study a new class of online learning problems where each of the online algorithm’s actions is assigned an adversarial value, and the loss of the algorithm at each step is a known and deterministic function of the values assigned to its recent actions. This class includes problems where the algorithm’s loss is the minimum over the recent adversarial values, the maximum over the recent values, or a linear combination of the recent values. We analyze the minimax regret of this class of problems when the algorithm receives bandit feedback, and prove that when the minimum or maximum functions are used, the minimax regret is Ω̃(T 2/3) (so called hard online learning problems), and when a linear function is used, the minimax regret is Õ( √ T ) (so called easy learning problems). Previously, the only online learning problem that was known to be provably hard was the multi-armed bandit with switching costs.
منابع مشابه
A New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملOnline and Stochastic Gradient Methods for Non-decomposable Loss Functions
Modern applications in sensitive domains such as biometrics and medicine frequently require the use of non-decomposable loss functions such as precision@k, F-measure etc. Compared to point loss functions such as hinge-loss, these offer much more fine grained control over prediction, but at the same time present novel challenges in terms of algorithm design and analysis. In this work we initiate...
متن کاملOnline Learning with Pairwise Loss Functions
Efficient online learning with pairwise loss functions is a crucial component in building largescale learning system that maximizes the area under the Receiver Operator Characteristic (ROC) curve. In this paper we investigate the generalization performance of online learning algorithms with pairwise loss functions. We show that the existing proof techniques for generalization bounds of online a...
متن کاملOnline Gradient Boosting
We extend the theory of boosting for regression problems to the online learning setting. Generalizing from the batch setting for boosting, the notion of a weak learning algorithm is modeled as an online learning algorithm with linear loss functions that competes with a base class of regression functions, while a strong learning algorithm is an online learning algorithm with smooth convex loss f...
متن کامل